Current status of vSolve Sergei Bolotin, Karen Baver, John M. Gipson, David Gordon and Daniel S. MacMillan NVI, Inc. at Goddard Space Flight Center Greenbelt, MD 20771, USA 21st EVGA Meeting Espoo, Finland, March 5–8, 2013 # VLBI data analysis software - New generation VLBI data analysis software - Increase in number of observations. - VLBI2010 introduce new observables. - History of vSolve development - The IVS Working Group on VLBI data structures (IVS WG4) was established in 2007. - In August of 2009 the VLBI group at the NASA GSFC started the development of new VLBI data analysis software. - A design of system architecture was presented at the IVS GM in Hobart, 2010. - We demonstrated a prototype version of vSolve at the 20th EVGA Meeting in Bonn, 2011. - A first version of vSolve was presented at the IVS GM in Madrid, 2012. - vSolve and geodetic VLBI data flow - vSolve is designed to replace most sensitive and user time consuming part of CALC/SOLVE system, interactive SOLVE. - It produces Version 4 databases: edited, with resolved group ambiguities and ionospheric corrections. - In this presentation we will cover the current status of the software. # Geodetic VLBI data flow: current state Current status of vSolve # Geodetic VLBI data flow: forthcoming CALC/SOLVE release # Software development environment The software is designed to (but not limited) work under Linux/GNU operation system. It is written in C++ programing language. We distribute the software code and use GNU Build System to make it portable. It uses the **Qt** library for high level data abstraction and system's **libc** and **libm** for low level system functions. For OpenDB IO interface **netCDF** library is used. Currently, it consists of two parts: - Space Geodesy Library, where all algorithms are implemented (90% of source code); - an executable vSolve a driver that calls the library and organizes work with an end-user (10% of source code). ### Modular structure of the software #### System Decomposition To keep our system stable and flexible we designed it modular. **Module** is a logical block of code that is loosely tied with other parts of the software. Each arrow on the diagram represents a **dependency** or, in other words, provides information (types, function calls, constants). Only main **dependencies** are shown on the diagram. ### General features #### Data processing - Single session mode: - vSolve is designed to analyze a single session, performs necessary calibrations and data editing. - Later it will evolve in powerful session editor that allows us to fix all known anomalies of the VLBI observation. - Multiple session mode: - vSolve does not make global solutions. A separate executable (driver) will be developed later to perform data analysis of multiple sessions of VLBI observations. ### General features #### Current functionality #### Features of the software: - The software is able to read and write data in Mk3 DBH format - It can also use new OpenDB format - There is no limitations on number of stations, sources or observations - It can work either through CALC/SOLVE catalog subsystem or in a standalone mode - Process of VLBI data analysis can be automated ### General features ### Operation The software is able to: - Read/write files in Mk3 DBH format - Read files in OpenDB format - Display on plots various information that were stored in the files - Process a single VLBI session and save results - Estimate various parameters - Detect and process clock breaks - Resolve group delay ambiguities - Perform ionospheric correction - ullet Calibrate weights of observations to ake a normalized χ^2 equal to unit - Eliminate outliers - Use different models in data analysis - Apply external a priori information ### Estimator ### Estimated parameters #### We can estimate: - Clock parameters - Zenith delays and theirs gradients - Stations positions - Antenna axis offsets - Sources coordinates - Polar motion offsets and rates - Earth rotation and its rate - Angles of nutation and their rates - Baseline clock offsets - Baseline vectors Current status of vSolve Estimated parameters ### Estimator #### Types of parameters - The estimated parameters can be modeled as: - Local parameter an unbiased parameter determined for whole session - Arc parameter an unbiased parameter estimated for specified by user interval (e.g., 1 hour) - Piecewise linear function, coefficients of continuous linear function are estimated from data, an interval between nodes is specified by user - Stochastic parameters - There is no limitations on length of arcs or step between nodes of piecewise linear functions. #### Clock break processing - To compensate a clock break, vSolve adds a step-wise linear function to the station clocks. - There are session wide and band dependent clock break models. - Clock breaks can be detected and corrected in automatic, semi-automatic and manual mode. Current status of vSolve Example of an unresolved 1-second clock break on station NYALES20 during \$10DEC06XA session #### Ambiguity resolution - Ambiguity resolution is done using ideas implemented in CALC/SOLVE. - There is no assumption about ambiguity spacing. vSolve can process sessions with mixed ambiguity spacing. - In addition, there is ability to adjust multipliers of ambiguity manually. Group delay residuals with unresolved ambiguities ### Ionospheric correction - From dual band observations the group delay, phase rate and phase delay ionospheric corrections are evaluated. - Ionospheric corrections are performed after clock breaks and ambiguity resolutions were processed. Impact of ionospheric effect on group delay residuals #### Corrections of weights of observations - Weight correction is performed to keep normalized χ^2 equal to unit. - Two modes of reweighting: - Session wide - Baseline dependent - Also, weight corrections can be imported from an external file. - Reweighting is performed in conjunction with outlier elimination. GUI controls of weight correction #### Outliers processing - Outlier is an observation which absolute value of normalized residual is greater than user specified threshold. - Two modes of outliers processing: - Session wide: - Baseline dependent. - Excluded observations can be included back in restoration action. - Outlier elimination is performed in conjunction with weight correction. GUI controls of outliers processing #### Applying models - CALC/SOLVE system takes into account a model of some geophysical effect using contributions – corrections to the theoretical values caused by the effect. - Some models are already included in the theoretical values, some are not. - To change a model: substract the corresponding contribution and add new precomputed one. GUI controls of applying contributions ### Using external a priori files - Update a priori information is done through external a priori files. - The following a priori information can be changed: - Station positions and velocities - Sources coordinates - Axis offsets of antennae - Mean site tropospheric gradients - Earth rotation parameters - Diurnal and semidiurnal ERP - Correction to the theoretical values for new a priori info: $$\delta\tau = \frac{\partial\tau}{\partial\vec{x}}(\vec{x}^{new} - \vec{x}^{dbh})$$ GUI controls of using external a priori files # VLBI data analysis #### Typical processing of a VLBI session - Read observations - Obtain single band delay solution - Check for clock breaks - Resolve ambiguities for both bands - Check for clock breaks - Evaluate ionosphere corrections - Add to estimated parameters zenith delays and station positions - Manually remove big outliers - Switch estimated parameters (clocks and zenith delays) to PWL functions - Manually remove large outliers - Add to estimated parameters UT1 rate and angles of nutation - Calibrate weights of observations - Eliminate outliers - Iterate reweighting/outlier processing - Save results # Next releases, plans for future A first public release of ${\bf vSolve}$ is planned in the forthcoming release of CALC/SOLVE system. After the public release we welcome users to provide comments and suggestions, that will improve the software. The next release will be focused on the following issues: - The plotting system will be reworked - Optimization of execution time - Extending functionality - Introducing of elements of automatic data processing Thank you for attention!